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Figure 8: Temperatures for five days in spring for the base case and the Guideline 36 control. In the top two charts,
regions outside the dual-setpoint for the room temperatures are displayed in red; in the bottom two charts, night-time
operation is displayed in grey.

time equations. Depending on the dynamics, this can 
be smaller than a second. Since some of the control 
samples every 2 minutes, it has shown to be favorable 
to also time sample the long-wave radiation network, 
whose solution is time consuming.

• Non-convergence: In earlier simulations, sometimes

the solver failed to converge. This was due to errors in 
the control implementation that caused event iterations 
for discrete equations that seemed to have no solution. 
In another case, division by zero in the control imple-
mentation caused a problem. The solver found a way 
to work around this division by zero (using heuristics) 
but then failed to converge. Since we corrected these 
issues, the simulations are stable.

• Properly handling hard switches: For continuous time

control, all switches that lead to discontinuities need 
hysteresis or timers, and the selected numerical solver 
need to be able to handle time and state events.

• Too fast dynamics of coil: The cooling coil is imple-

mented using a finite volume model. Heat conduction

along the water and air flow paths used to be neglected

as the mode of heat transfer is dominated by forced con-
vection if the fan and pump are operating. However, 
during night when the system is off, the small infiltra-
tion due to wind pressure caused in earlier simulations 
the water in the coil to freeze. Adding diffusion along 
the flow path circumvented this problem, and the coil 
model in the library includes now by default a small 
diffusive term.

This indicates that certain simplifications that are common 
in many building simulation programs, such as prescribed 
mass flow rates, can give unrealistic simulations once con-
trol and flow friction is no longer idealized.

DISCUSSION AND CONCLUSIONS

Differences in properly designed conventional control se-
quences can have a substantial impact on energy con-
sumption; in our example, site HVAC electricity use is 
reduced by 30%. Such a sensitivity of energy consump-
tion with respect to the control sequence raises the fun-
damental question of whether today’s simplified control 
implementations, as found in the major building energy



simulation programs, are adequate for predicting annual 
energy consumption.
Conducting the case study indicated that correct imple-
mentation of sequences such as published in Guideline 36 is 
difficult and time-consuming. Verification of the correct 
implementation by mere inspection is not possible due to 
the various timers, switches and interlocks. In fact, we 
detected certain implementation errors only when we con-
ducted closed loop simulations in different seasons. For-
tunately, by providing ready-to-use libraries of such se-
quences that can be configured to a particular building, 
as we demonstrated with our implementation, this com-
plexity of implementation can be hidden from the end-
user. Therefore, a library of carefully designed and im-
plemented control sequences has the potential to substan-
tially reduce energy consumption.
We demonstrated that using a certain subset of Model-
ica, which suffices for block-diagram modeling and which 
lowers the effort to develop code generators, enables the 
performance comparison of different control strategies 
within annual building energy simulations.
In future work, we will expand a library of control se-
quences and further develop a tool chain to

1. enable mechanical designers to create specifications 
based on the simulation model,

2. allow control providers to translate CDL-conformant 
control sequences to their product line, and

3. allow the commissioning provider to verify correct 
implementation by executing the control model with 
inputs and parameters obtained from the real imple-
mentation, and comparing the simulated with the real 
actuator signals.

We also recommend implementing Guideline 36 using 
the CDL language. This would allow a non-ambiguous, 
exe-cutable specification against which vendor-specific 
imple-mentations could be tested and certified using 
free, open-source tools.
In addition, R&D is ongoing in a project called “Spawn 
of EnergyPlus” to redesign EnergyPlus so that it supports 
this process (see https://lbl-srg.github.io/soep/).
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